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The scaling behavior of a directed polymer in a two-dimensional random potential under confining force is
investigated. The energy of a polymer with configuration �y�x�� is given by H(�y�x��)=�x=1

N �(x ,y�x�)+�W�,
where ��x ,y� is an uncorrelated random potential and W is the width of the polymer. Using an energy
argument, it is conjectured that the radius of gyration Rg�N� and the energy fluctuation �E�N� of the polymer
of length N in the ground state increase as Rg�N��N� and �E�N��N�, respectively, with �=1/ �1+�� and
�= �1+2�� / �4+4�� for ��1/2. An algorithm of finding the exact ground state, with the effective time
complexity of O�N3�, is introduced and used to confirm the conjecture numerically.
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I. INTRODUCTION

Scaling behaviors of directed polymers in a random media
�DPRM� have been studied extensively due to the math-
ematical interest of optimal path problems in random envi-
ronments in addition to their application to physical systems
such as stretched polymer in a gel or flux lines in a disor-
dered superconductor �1�. A directed polymer is stretched in
the longitudinal direction but can fluctuate in the transversal
direction. We can map a configuration of a directed polymer
in a d-dimensional space to a path of random walkers in the
dt=d−1 dimensional space �in the transversal direction�
when the longitudinal direction is considered as the time.
Therefore, in sufficiently low temperature, a DPRM corre-
sponds to the minimum energy path of a random walker in a
random potential ��t ,r��. Its scaling properties are character-
ized by two exponents, transverse length scale exponent �o
and energy fluctuation exponent �o �2�. For the dt=1 dimen-
sional walkers, the exact values of these exponents, �o
=2/3 and �o=1/3 can be obtained analytically by the com-
binatorial method �3�. The exact exponent values can also be
obtained by mapping the free energy of a random walker to
Kardar-Parisi-Zhang equation �KPZ� via Cole-Hope transfor-
mation �1,4–7�. This mapping shows that the exponents for
the DPRM, �o and �o should be equal to the inverse of the
dynamic exponent, 1 /zKPZ=2/3 and the growth exponent,
	KPZ=1/3 of KPZ equation, respectively, at any finite tem-
perature. In other words, any disorder drives a directed poly-
mer in the d=2 dimensional media into a strong disorder,
pinned phase at T=0.

In this paper, we study the scaling properties of a DPRM
under confining force �DPRMCF�. The Hamiltonian for a
DPRMCF has two terms, the usual random potential term
ERM of the DPRM and the confining energy term EC which
prefers the straight polymer in global length scale. It may
describe a DPRM confined by an inflatable but nonflexible
tube or by two rods with springs as illustrated in Fig. 1�a�.
We consider the confining energy which depends only on the

“global width” W of the polymer. Such confining energy
term may mimic the elastic energy of the �inflatable� tube or
the spring which prefers the smaller width. The confining
force on the center polymer may arise from the repulsion
from the other polymers �red dashed line� outside of the rods
if we consider an array of polymers on a plate as illustrated
in Fig. 1�b�. We may find other physical systems that our
model might be applied, such as the motion of a single step
on a terrace with quenched random impurities in a vicinal
surface �8� but the principal motivation for the model is
rather theoretical interest. The effects on the scaling proper-
ties of random walkers or directed polymers from the energy
terms associated with the global configuration quantity, such
as the global width W, are theoretically intriguing �9–12�.
For example, the confining energy term Ec�W makes the
normal random walkers �without ERM� visit the same y value
sites even times stochastically �9�, and changes the “rough-
ness” exponent to 1/3 from the conventional universal value
of 1 /2 �9,12,13�. The path of this stochastic even visiting
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FIG. 1. �Color online� Directed polymers in 2D random media
under confining force. The magnitude of the random potential at
each lattice site is denoted by the area of the circles at the lattice
site. A directed polymer is confined by the two rods. The confining
force may come from the elasticity which are symbolized by the
spring �a� or from the repulsion of the polymers �red dashed lines�
at the outside of the rods �b�.
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random walker can be mapped as a one-dimensional �1D�
interface profile which is called a “self-flattening” surface
�10,11�. The height-height correlation function of the self-
flattening surface shows an anomalous scaling behavior in
the sense that the local wandering exponent is different from
the global roughness exponent �11�. This anomalous behav-
ior indicates the existence of window length scale l�N��N


with 0�
�1 above which the global energy term becomes
relevant. Recently, it has been conjectured that the window
exponent 
 is given by 
=D / �D+�o� from an energy-
entropy argument where D is the dimension of the surface
and �o is the roughness exponent without the self-flattening
mechanism �14�. This argument seems to be valid for the
general self-flattening mechanism, which corresponds to
nonzero finite temperature dynamics with the confining en-
ergy proportional to the width W �10–12�.

Here, we study the scaling properties of the zero tempera-
ture, ground state paths for a DPRMCF in two dimensions
�2D� with a confining energy in the form of Ec=�W� �15�. If
we assume the existence of window length l�N��N
, a
power counting argument predicts 
=3/ �2+2�� for �
�1/2 and the confining energy of any positive � changes the
roughness exponent � to 1 / �1+�� from �o=2/3 and the en-
ergy fluctuation exponent � to �1+2�� / �4+4�� from �o

=1/3. This conjecture is numerically tested for a series of
different � values.

This paper is organized as follows. In Sec. II, we define
the DPRMCF model. An analytic prediction for the rough-
ness exponent � and the energy fluctuation exponent � is
presented in Sec. III. An algorithm for a numerical study of
DPRMCF which finds the exact ground state in the effective
time complexity of O�N3� is introduced in Sec. IV. In Sec. V,
we present the numerical results from a series of Monte
Carlo simulations for the DPRMCF model and calculate the
exponents � and �. We conclude the paper with a summary
and remarks in Sec. VI.

II. MODEL

We consider a discrete model for a directed polymer in a
random media under confining force �DPRMCF� whose
Hamiltonian has two terms, site random potential and con-
fining energy. Before introducing the details of our
DPRMCF model, let us first explain a discrete model for
DPRM without the confining force. We consider polymers on
a 2D lattice whose horizontal axis is x and the vertical axis is
y �i.e., the dt=1 dimensional transversal space is the y axis�.
At each lattice site, random potential ��x ,y�� �0,1� taken
from a uniform distribution with

	��x,y���x�,y��
 = 1
4 + 1

12
x,x�
y,y� �1�

is assigned. Since overhangs are forbidden for a directed
polymer, its configuration is specified by a single valued in-
teger function y�x��Z with �y�x+1�−y�x��=1. The energy of
a DPRM is given by the sum of site potentials �(x ,y�x�) on
which the polymer lies. At zero temperature, a polymer on a
given random potential locates at the path which minimizes
the total site energies of the random media,

ERM��y�x��� = �
x=1

N

�„x,y�x�… , �2�

where N is the length of the polymer.
The configurational space of a DPRMCF is the same as

that of a DPRM but the Hamiltonian H of a DPRMCF has
the confining energy term EC=�W� in addition to the ERM,

H„�y�x��… = �
x=1

N

�„x,y�x�… + �W�. �3�

Here, W is the absolute “width” of the polymer defined by

W = ymax − ymin + 1, �4�

where ymax and ymin are the maximum and the minimum
values of y�x�, respectively, and � and � are positive param-
eters so that the confining energy increases when the width
grows.

III. WINDOW HYPOTHESIS AND POWER COUNTING
ARGUMENT FROM ENERGY FLUCTUATION

We study the scaling properties of the zero temperature,
ground state paths for the Hamiltonian of Eq. �3�. The statis-
tical behaviors of a polymer in random media are usually
characterized by the radius of gyration Rg and the energy
fluctuation �E defined by

Rg�N� = �	�y − ȳ�2


=� 1


�
���
 1

N
�
x=1

N �y��x� −
1

N
�
x=1

N

y��x��2� �5�

and

�E�N� = �	�E − 	E
�2


=� 1


�
���
�H�„�y��x��… −

1


�
���

H�„�y��x��…�2

,

�6�

where  is the number of different realizations of random
potentials and �y��x�� and H�(�y��x��) are the ground state
path and its energy for a given random potential �. These
two quantities asymptotically increase as

Rg�N� � N�, �7�

�E�N� � N� �8�

for the ground state paths for a variety of different distribu-
tions of the randomness �2,16,17�.

In this section, we estimate � and � for the DPRMCF by
comparing the ERM and EC in the ground state. For a directed
polymer in a 2D random media, it has been well known that
the energy of the minimum path of length N can be asymp-
totically written as

EDPRM�N� = aN + bN�o, �9�

with N independent positive parameters, a, b, and �o. As N
goes to infinity, the parameter a becomes sample indepen-

HYEONG-CHAI JEONG PHYSICAL REVIEW E 72, 031803 �2005�

031803-2



dent and is about 0.25 for a random potential ��x ,y�
� �0,1� taken from a uniform distribution. On the other
hand, the second coefficient b is a sample dependent param-
eter with a finite variation. The energy fluctuation of the
DPRM with length N is given by

�EDPRM�N� = �	�EDPRM − 	EDPRM
�2
 = ���b�2N�o,

�10�

and �o is called the energy fluctuation exponent for the
DPRM �5,6�.

We estimate � and � for our DPRMCF model using Eq.
�9� with an assumption of the existence of “window” �9,11�.
The confining energy term is assumed to be relevant only
beyond a certain length scale of l�N
, so-called window
�9,11� so that the polymer behaves like DPRM within the
length scale of l. Then, the random potential energy
ERM�l ;N� of DPRMCF with length N can be written as

ERM�l;N� = �al + bl�o��N/l� = aN + bNl�o−1 �11�

and the total energy of DPRMCF is given by

H�l;N� = ERM�N� + �W� = aN + bNl�o−1 + cl��o, �12�

where a, b, and c are independent of l and N since the abso-
lute width of the polymer W is of order l�o. From the mini-
mization of H�l ;N� with respect to l �i.e., from �H /�l=0�,
we have

��o
 − 
 = 1 + �o
 − 2
 �13�

and the window exponent 
 and the roughness exponent �
are given by


 = 1/�1 + ��o − �o� = 3/�2 + 2�� , �14�

� = 
�o = �o/�1 + ��o − �o� = 1/�1 + �� , �15�

where we use �o=2/3 and �o=1/3 for 1D DPRM �2,5,6�.
The above two equations for 
 and � are only valid for �
�1/2 since 
 cannot be larger than 1. For 0���1/2, we
expect �=�o since the confining energy term is not relevant
since the third term of Eq. �12� can be always neglected
comparing to the second term as N goes to infinity.

We can use a similar argument to estimate the energy
fluctuation exponent. We first assume that the total energy
fluctuation �H should show the same N dependence as the
random potential energy fluctuation �ERM for ��1/2 from
the power counting argument. Then, for the estimation of
�ERM, we use the same “window” argument used to extract
the roughness exponent �. Since there are N / l�N1−
 win-
dows whose energies fluctuate with the “amplitude” l�o

�N�o
, we have

�ERM�N� = N�o
N�1−
�/2 �16�

and the energy fluctuation exponent � is given by

� = �o
 +
1

2
−

1



=

1 + 2�

4�1 + ��
. �17�

IV. EXACT ENUMERATION ALGORITHM

In this section, we consider a numerical method to find
the ground state of the DPRMCF. For a given random energy
��x ,y�� �0,1� for the 2D lattice sites �x ,y��Z2, we find the
minimum energy path of Eq. �3� using an exact enumeration
method under the constraint of �y�x+1�−y�x��=1 with the
anchored �y�0�=0� boundary condition. Since the number of
all possible paths increases as 2N for a polymer of length N,
it is �computationally� impossible for large N �say, N�50� to
find the ground state by comparing the energies of all paths.
We present an efficient algorithm of finding the exact ground
energy path with the effective time complexity O�N3�, based
on the transfer matrix algorithm �TMA� �2� for the DPRM
problem. Figures 2�a� and 2�b� illustrate the TMA for the
DPRM problem. We represent the random potential in �a� by
writing its value at each lattice site in the circle at the site
�for clarity, we show an integer-valued random potential
��x ,y�� �1,2 , . . . ,9� instead of real numbers from �0,1�� and
show the minimum energy path in �b� by a solid line. The
number in the circle at the site �x ,y� in �b� is the minimum
potential energy Em

0 �x ,y� of a polymer from the origin to the
site �x ,y�. The minimum energies Em

0 �x ,y� for all the �x ,y�
with �y��x for x� �1,2 , . . . ,N� can be obtained in O�N2�
time using the TMA,

FIG. 2. �Color online� Directed polymer in 2D random media.
�a� A random potential is assigned at each lattice site. �b� Transfer
matrix algorithm for a DPRM. The number in the circle at the site
�x ,y� is the sum of site potentials of the minimum energy path from
the origin to the site �x ,y�. The solid line is the minimum energy
path to x=N. �c� For the DPRMCF, the minimum energy path to the
site �x ,y� is not a simple sum of the site �x ,y� and the minimum
energy path to �x−1,y−1� or �x−1,y+1� �see text�. �d� The mini-
mum energy path for a modified potential �̃yL,yU

�x ,y� with yL=−2
and yU=1.
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Em
0 �x,y� = ��x,y� + min�Em

0 �x − 1,y − 1�,Em
0 �x − 1,y + 1��

�18�

with Em
0 �0,0�=��0,0� and Em

0 �x ,y�=� for �y��x, where
min�A ,B� is the minimum value of A and B. The minimum
energy path Pm

0 �x ,y� from the origin to the site �x ,y� can be
obtained similarly,

Pm
0 �x,y� =�

�x,y� + Pm
0 �x − 1,y − 1�

if Em
0 �x − 1,y − 1� � Em

0 �x − 1,y + 1� ,

�x,y� + Pm
0 �x − 1,y + 1�

if Em
0 �x − 1,y − 1� � Em

0 �x − 1,y + 1�
� �19�

with Pm
0 �0,0�= �0,0�. �If Em

0 �x−1,y−1�=Em
0 �x−1,y+1�, the

minimum energy path is not unique and both paths become
the minimum energy paths, but this is a very rare event for
real values of �.� The ground state energy Eg

0�N� is then
given by the minimum of Em

0 �N ,y� over y,

Eg
0�N� = min

y
Em

0 �N,y� �20�

for �y��N and the ground state path is given by

Pg
0�N� = Pm

0
„N,ym

0 �N�… , �21�

where ym
0 �N� is the site such that Em

0 (N ,ym
0 �N�)=Eg�N�. The

ground state path for the random potential of Fig. 2�a� is
obtained this way and shown in Fig. 2�b� as the solid line.

One might suppose that a similar transfer matrix algo-
rithm, with the time complexity of O�N2�, might be possible
for a DPRMCF. The first term of Eq. �18�, ��x ,y� is the
energy cost for a DPRM to proceed one step further from
x−1 to x. A naive generalization of Eq. �18� is replacing
��x ,y� by ��x ,y�+���W+1��−W�� when the one-step move-
ment increases the polymer width from W to W+1. However,
such algorithm does not lead to the global ground state of
Eq. �3� since the minimum energies Em�x−1,y−1� and
Em�x−1,y+1� are not enough to determine Em�x ,y� as illus-
trated in Fig. 2�c� where Em�x ,y� is the energy �including the
confining term� of the ground state path to the point �x ,y�
from the origin. As an example, consider the minimum en-
ergy path to the point �4,2� Pm�4,2� for �=1 and �=2 with
��x ,y� given in Fig. 2�a�. By comparing energies of all
paths, one can see that Pm�4,2� is given by Pm�4,2�
= �0,0�-�1,1�-�2,2�-�3,1�-�4,2�, denoted by the solid line in
Fig. 2�c�. This path is not a simple addition of the endpoint
�4,2� to Pm�3,1� unlike the case of the DPRM. The minimum
energy path to �3,1� is given by Pm�3,1�= �0,0�-�1,1�
-�2,0�-�3,1�, denoted by the dashed line. It has lower energy
than Pe�3,1�= �0,0�-�1,1�-�2,2�-�3,1� although ��2,0�
���2,2� since the global width of Pm�3,1� is smaller than
that of Pe�3,1�. However, Pm�4,2� is given by the addition
of the endpoint �4,2� to Pe�3,1� not to Pm�3,1�. This is be-
cause the global widths of both paths to �4,2�, the path
through Pe�3,1� and the path through Pm�3,1�, are the same
as 3. Therefore, for a DPRMCF, we need information on
the minimum height ymin and the maximum height ymax of
the path as well as the potential energy of the path. In

other words, the minimum energy Em�x ,y� up to the site
�x ,y� is not enough but we need to know the minimum
energies Em�x ,y ,ymin,ymax� of the paths to �x ,y� for all
different combinations of ymin and ymax. The minimum
energy Em�x ,y ,ymin,ymax� can be calculated from the mini-
mum energies Em�x−1,y−1,ymin� ,ymax� � and Em�x−1,y
+1,ymin� ,ymax� � for a proper combinations of ymin� and ymax�
values and the ground state energy of Eq. �3�, Eg�N� is ob-
tained as the minimum of Em�N ,y ,ymin,ymax�, over y, ymin,
and ymax,

Eg�N� = min
y,ymin,ymax

Em�N,y,ymin,ymax� . �22�

In principle, one can construct an algorithm to find ground
state energy and its path based on Eq. �22� but it generally
requires O�N4� memory and time. Although its “effective”
time complexity can be reduced O�N3� �see below�, the
O�N4� memory requirement puts a strong upper bound on the
sizes of the systems to be investigated.

In this paper, we use an algorithm which uses only O�N2�
memory but is more efficient than the algorithm using Eq.
�22�. As before, we imagine the set Yymin,ymax

of paths whose
minimum and maximum heights are ymin and ymax but we
first consider the path with the minimum potential energy,

Em
0 �N,ymin,ymax� = min

�y�x���Yymin,ymax

��
x=1

N

�„x,y�x�…� , �23�

instead of the minimum total energy. Since the minimum
total energy Em�N ,ymin,ymax� for the given ymin and ymax val-
ues, is simply given by

Em�N,ymin,ymax� = Em
0 �N,ymin,ymax� + ��ymax − ymin + 1��,

�24�

the ground state energy Eg�N� can be obtained by

Eg�N� = min
ymin,ymax

Em�N,ymin,ymax� = min
ymin,ymax

�Em
0 �N,ymin,ymax�

+ ��ymax − ymin + 1��� , �25�

from the minimum potential energies. Note that we always
have ymin�0 and ymax�0 since we set y�0�=0 as the an-
chored boundary. Therefore, in general, we need to calculate
Em

0 �N ,ymin,ymax� for N2 different combination of ymin�
�0,−1, . . . ,−N� and ymax� �0,1 , . . . ,N� to get the ground
state energy Eg�N�. However, for a confining energy with
positive � and �, we do not have to look for the paths with
ymax�W0 or ymin�−W0 where W0 is the width of the mini-
mum potential path Pg

0, which minimizes ERM of Eq. �2�. Let
ymin

0 and ymax
0 be the minimum and the maximum heights of

the minimum potential path Pg
0. Then Em

0 �N ,ymin
0 ,ymax

0 � is the
minimum of the first term in the square brackets of Eq. �25�
and W0=ymax

0 −ymin
0 +1. The total energy of a path, whose

ymax�W0 or ymin�−W0, cannot be smaller than that of
Pg

0 since its confining energy is larger than �W0
� in addition

to the fact that its potential energy is larger than
Em

0 �N ,ymin
0 ,ymax

0 �. Therefore, for a given ��x ,y�, the
ground state energy Eg�N� of Eq. �25� can be obtained
from the minimization of Em�N ,ymin,ymax� over ymin
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� �0,−1, . . . ,−W0+1� and ymax� �0,1 , . . . ,W0−1�.
Now, let us introduce a simple way to calculate

Em
0 �N ,ymin,ymax� for the �ymin,ymax� pairs needed for the

minimization of Eq. �25�. We use the conventional TMA for
the DPRM problem but with a series of modified site poten-
tials,

�̃yL,yU
�x,y� = ���x,y� for yL � y � yU,

� otherwise,
� �26�

for yL�−W0 and yU�W0. Note that we cannot obtain the
minimum energies Em

0 �N ,ymin,ymax� for all pairs of
�ymin,ymax� with ymin�−W0 and ymax�W0 by simply apply-
ing TMA to the potential �̃yL,yU

, since �ymin,ymax� of the
minimum potential path PyL,yU

0 of �̃yL,yU
is not necessarily

equal to �yL ,yU�. As an example, Fig. 2�d� shows PyL,yU

0 for
�yL ,yU�= �−2,1�. The minimum height of the PyL,yU

0 , ymin

=−2 is equal to yL but the maximum height of it, ymax=0 is
not equal to yU=1. Therefore, the minimum path energies for
the two modified random potentials �̃−2,0 and �̃−2,1 are the
same as Em

0 �N ,−2 ,0� and we cannot obtain Em
0 �N ,−2 ,1� by

the TMA with �̃yL,yU
. However, this means that Em

0 �N ,
−2 ,1� is larger than Em

0 �N ,−2 ,0� and we can safely exclude
Em�N ,−2 ,1� from the candidates of the Eg�N� since Em�N ,
−2 ,1� must be larger than Em�N ,−2 ,0�. In general, we can-
not obtain Em�N ,yL ,yU� by the TMA with �̃yL,yU

if
�ymin,ymax� of PyL,yU

0 is not equal to �yL ,yU� but we can ex-
clude Em�N ,yL ,yU� in the minimization of Eq. �25� since this
means Em�N ,yL ,yU� is always larger than Em�N ,ymin,ymax�.
If, the �ymin,ymax� value is not equal to �yL ,yU�, Em

0 �N ,yL ,yU�
is larger than Em

0 �N ,ymin,ymax� in addition to �yU−yL+1��

� �ymax−ymin+1��. In other words, Eg�N� can be obtained by
finding the minimum of Em�N ,ymin,ymax� over only the
�ymin,ymax� pairs which can be obtained by the TMA with
�̃yL,yU

for yL�−W0 and yU�W0.
Let us summarize our algorithm to find the ground state

for a DPRMCF. For a given ��x ,y�, we first find the mini-
mum potential path Pg

0 without the confining energy term by
using the conventional TMA for a DPRM and calculate W0.
This can be done in O�N2�. Then we find PyL,yU

0 by applying
the TMA to a series of the modified potentials �̃yL,yU

for yL

�−W0 and yU�W0, and measure their potential energies
Em

0 �N ,ymin,ymax� and widths W=ymax−ymin+1. For a given
yL and yU, PyL,yU

0 can be obtained in time of order N�yU

−yL�. Since W0�N2/3, all PyL,yU

0 can be obtained in O�N3� on
average. The ground state energy Eg�N� is then given by the
minimization of Em�N ,ymin,ymax� through Eq. �25� and the
ground state path is given by the corresponding minimum
energy path. Note that the ground state energies and their
paths for all positive � and � values can be obtained using
Eq. �25� once we get PyL,yU

0 for yL�−W0 and yU�W0.

V. NUMERICAL RESULTS

We first consider a harmonic confining energy of �W2,
that is, the �=2 case with the random potentials ��x ,y�
� �0,1� taken from the uniform distribution. We simulate

random potentials � using the computer-generated pseudo-
random numbers �18� and find the ground state path of Eq.
�3� using the algorithm presented in the preceding section.
Then, we measure the square width R�

2 �the square brackets
of the Eq. �5�� and the first E� and the second E�

2 moments
of the energy for the ground state path for the given �. The
radius of gyration Rg and �E are then obtained as

Rg=�	R�
2
 and �E=�	E2
− 	E
2 where 	A
 means the aver-

age over different realization of random potentials. We use
eight million different realizations �=8�106� of random
potentials for N=16, 23, 32, 45, 64, 92, and 128 systems and
four, two, and one million different realizations for N=256,
362, and 512 systems, respectively, to obtain the average
values. The average over this large number of different ran-
dom potentials makes the statistical error bars smaller than
the sizes of the symbols in most cases except for the effec-
tive energy fluctuation exponents �eff shown in Fig. 4�b� and
Fig. 7�d� later.

Figure 3�a� shows the radius of gyration Rg for the har-
monic confining energy Ec=�W2 as a function of polymer
length N for �=0, 0.001, 0.002, 0.004, 0.008, 0.016, and 0.04
cases. For each � value, Rg lies on a straight line in a log-log
scale plot indicating Rg�N��N�. The least �2 fits of Rg�N�
�N� give �=0.66, 0.48, 0.43, 0.38, 0.36, 0.34, and 0.33 for
�=0, 0.001, 0.002, 0.004, 0.008, 0.016, and 0.04 cases, re-
spectively. The “roughness” exponents for ��0.04 are al-
most identical to those of the �=0.04 case unless � is very
large where the finite size effect is strong.

To estimate � values for N→�, we calculate N dependent
effective roughness exponent �eff defined by the successive
slopes in the log-log plot. We use neighboring three points to
get the local slope, i.e., �eff�Nk� is obtained as the slope of the
least �2 fit using the three data Rg�Nk−1�, Rg�Nk�, and
Rg�Nk+1�, where Nk are the system sizes in an ascending or-

FIG. 3. �a� Radius of gyration Rg for N=16, 23, 32, 45, 64, 92,
128, 256, 362, and 512 systems with a harmonic confining energy
Ec=�W2 ��=2�. From the top, Rg for �=0, 0.001, 0.002, 0.004,
0.008, 0.016, and 0.04 cases are shown. Fitting lines are in the form
of Rg=aN� with �=0.65, 0.48, 0.43, 0.38, 0.36, 0.34, and 0.33,
respectively, from the top. �b� Effective roughness exponents �eff

for �=0, 0.001, 0.002, 0.004, 0.008, 0.016, and 0.04 values are
plotted against 1 /N� with �=0.5 from the top. The uppermost curve
of �=0 goes to the known value of �o=2/3 but all the other curves
go to much smaller value around 1/3 as N goes to infinity.

DIRECTED POLYMERS IN RANDOM MEDIA UNDER … PHYSICAL REVIEW E 72, 031803 �2005�

031803-5



der, 16=N1�N2� ¯ �N10=512. The roughness exponent �
is estimated by extrapolating �eff in the infinite size limit
with a plot �eff against 1 /N�. In Fig. 3�b�, we choose �
=0.5 which characterizes the trend of �eff for large N well.
From the figure, we see that our numerical measurement of �
for �=0 is consistent with the known value �o=2/3 of the
DPRM. However, it is clear that the roughness exponents of
the DPRMCF ���0� are not equal to �o. It is difficult to
extract the definite � values from our numerical data but we
speculate that �eff goes to the conjectured value of 1 /3 for all
��0 as the system size N goes to infinity.

Figure 4�a� shows the energy fluctuation �E as a function
of polymer length N for the above seven � values. As in the
case of Rg�N�, for each � value, �E lies on a straight line in
a log-log scale plot indicating a power law increase. The
least �2 fits of �E�N��N� give �=0.32, 0.36, 0.37, 0.39,
0.40, 0.41, and 0.41 for �=0, 0.001, 0.002, 0.004, 0.008,
0.016, and 0.04 cases, respectively. We estimate the energy
fluctuation exponent � as the N→� limit of the effective
exponents �eff as for the roughness exponent. The effective
exponent �eff is defined as the successive slopes in the log-
log plot of Fig. 4�a� and obtained by the least �2 fit with the
three neighboring points. In Fig. 4�b�, the effective expo-
nents are plotted against 1 /N� with �=0.5 as before. From
the figure, we see that our numerical measurement of � for
�=0 is consistent with the known value �o=1/3 of the
DPRM. For ��0, all curves seem to go toward the conjec-
tured value of �= 5

12 �0.417.
In addition to the radius of gyration, we also measure the

height �transverse position� correlation function G�x ;N� to
check the “window” argument. The correlation function
G�x ;N� is defined by the mean square height of the site x of
a polymer of length N,

G�x;N� = 	y�x�2
 =
1


�

���x,y��
y�

2�x� , �27�

where  and y��x� are the same as in Eq. �5�.
Figure 5�a� shows the G�x ;N� for the DPRM ��=0� for

N=32, 64, 128, 256, and 512 systems. All the data collapse
to a single curve with G�x��x2/3 except the points near or at
the boundaries at x=N. Note that the ground state path y��x�
for a given random potential � cannot be determined locally
even in the case of �=0. In other words, the minimum energy
path up to x is different from the subpath up to x of the
minimum energy path of length N�x. Due to the global
nature of the ground state path determination, G�x ;N� devi-
ate from the infinite size behavior for a finite portion of N
even for the free boundary condition �19�. Yet, the height
correlation function follows the scaling relation:

G�x;N� = N2�ogo�x/N� , �28�

where go�u� increases as go�u��u2�o unless u is very close to
1 where the boundary effect exists. When we rescale the
correlation function G�x ;N� by N2�o with �o=2/3 and x by
N, all the data collapse to a single curve as shown in Fig.
5�b�.

However, the correlation function G�x ;N� for ��0 shows
qualitatively different behaviors from the DPRM case. When
there is an energy term associated with the global width,
there seems to be another length scale over which the corre-
lation function saturated. Figure 6�a� shows the G�x ;N� for
�=0.04 for N=32, 64, 128, 256, and 512 systems. As x in-
creases, the correlation functions increase algebraically only
for x� l�N� and then remains as constant values. We rescale
the correlation functions G�x ;N� by N2� and x by N
 with the
conjectured values of Eq. �15�, �=1/3 and 
=1/2 and plot
G�x ;N� /N2� against x /N
 in Fig. 6�b�. All data collapse to a
single curve, implying a scaling law

FIG. 4. �a� Measured energy fluctuation �E for the systems of
sizes N=16, 23, 32, 45, 64, 92, 128, 256, 362, and 512 for �=2.
From the bottom, �E for �=0, 0.001, 0.002, 0.004, 0.008, 0.016,
and 0.04 cases are shown. Fitting lines are in the form of �E
=aN� with �=0.32, 0.36, 0.37, 0.39, 0.40, 0.41, and 0.41, respec-
tively, from the bottom. �b� Effective exponents �eff for the above
seven different values of � are plotted against 1 /N� with �=0.5. As
N goes to infinity, the lowest curve of �=0 goes to the known value
of �o=1/3 but all the other curves go to much larger value around
the predicted � of 5/12.

FIG. 5. �a� G�x� for the systems of sizes N=32, 64, 128, 256,
and 512 with no confining force �=0. �b� A rescaled height corre-
lation G�x� /N2�o is plotted against rescaled distance x /N with �o

=2/3 in log scale.
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G�x;N� = N2�g�x/N
� . �29�

The scaling function g�u� increases as g�u��u2�o for u�1
and then becomes a constant for u�1. In other words,
G�x ;N� increase as x2�o for x�N
 and reaches a constant
value for x�N
. Note that the scaling function grows alge-
braically with exponent 2�o not with 2� supporting the as-
sumption that our polymer behaviors like a DPRM up to the
window size N
 and then feels the global constraints of the
confining force over the window size.

We perform a series of simulations for other values of �
and obtain the numerical results consistent with the conjec-
ture of Eq. �15�. Figure 7 shows the radius of gyration Rg and
the energy fluctuation �E and their effective exponents �eff
and �eff for the confining energy of Wc=�W ��=1�. The ra-
dius of gyration Rg lies on a straight line in a log-log scale
plot as before and the least �2 fits of Rg�N��N� give �
=0.65, 0.57, 0.53, 0.49, 0.46, and 0.45 for �=0, 0.05, 0.1,
0.2, 0.5, and 1.0, respectively. Note that the � values from
the least �2 fits �using Rg for N�512� are smaller than the
conjectured value of 1 /2 for some large epsilon values while
those for small epsilon values are larger than the conjectured
values unlike the case of �=2. Yet, as the system size goes to
infinity, all the effective roughness exponents �eff seem to go
to the conjectured value of 1 /2 for ��0 while �eff for �=0
goes to the known value of 2 /3 �see Fig. 7�b��. The energy
fluctuation �E is also measured and the effective energy
fluctuation exponents �eff are calculated from them. As
shown in Fig. 7�c�, the energy fluctuation �E increases as
�E�N� with �=0.32, 0.33, 0.34, 0.35, 0.35, and 0.35 for
�=0, 0.05, 0.1, 0.2, 0.5, and 1.0, respectively. From this data,
it seems to be difficult to distinguish the energy fluctuation
exponent of DPRMCF from that of DPRM. The analysis of
the effective exponents �eff�N� provides somewhat better di-
agnosis. In Fig. 7�d� we plot �eff against 1 /N0.5 as before.
The error bars of �eff for �=1 are relatively large as shown

in the figure although we obtain the effective exponent with
more than one million different random potentials. The tiny
statistical errors in the second moment, E2, about the
1/1000000 of the average values �of the second moment, E2�,
give rise to large errors in � f as shown in Fig. 7�d�. Due to
these limitations, we cannot extract the definite value of �
for ��0 from our simulations but the numerical results do
not seem to exclude the conjectured value of �=3/8
=0.375. Our simulations on other � values such as �=1.5
and �=3 also give the consistent results with the conjecture
of Eqs. �15� and �17�.

VI. CONCLUDING REMARKS

We consider the scaling behavior of a directed polymer in
a 2D random media with confining energy Ec=�W� and find
that the roughness exponent � and the energy fluctuation
exponent � are given by �=1/ ��+1� and �= �2�+1� /4��
+1�, respectively. These results can be understood by assum-
ing that a polymer of length N behaves like a DPRM up to
the window size l�N��N
 and then feels the confining en-
ergy over the window size.

We have only considered the scaling behavior of the zero
temperature ground state polymers. We know the finite tem-
perature behaviors of the polymers only for some limiting
cases. For DPRM where the confining energy term is absent,
zero temperature pinned phase is the fixed point so that poly-

FIG. 6. �a� The correlation function G�x� for the systems of
sizes N=32, 64, 128, 256, and 512 with a confining energy Ec

=0.04W2. �b� The rescaled height correlation G�x� /N2� is plotted
against rescaled distance x /N
 in a log scale with �=1/3 and 

=1/2.

FIG. 7. �a� Measured Rg for the systems of sizes N=16, 23, 32,
45, 64, 92, 128, 256, 362, and 512 for �=1. From the top, Rg for
�=0, 0.05, 0.1, 0.2, 0.5, and 1.0 cases are shown. Fitting lines are in
the form of Rg=aN� with �=0.65, 0.57, 0.53, 0.49, 0.46, and 0.45
from the top. �b� Effective roughness exponents �eff for the above
seven different values of � are plotted against 1 /N� with �=0.5. As
the system size goes to infinity, the effective exponents seem to go
to the conjectured value 0.5 for all ��0. �c� Energy fluctuations �E
are plotted against N. Fitting lines are in the form of �E=aN� with
�=0.32, 0.33, 0.34, 0.35, 0.35, and 0.35 in an ascending order or
epsilon values from the bottom. �d� Effective energy fluctuation
exponents �eff against 1 /N� with �=0.5. The lowest curve is for the
�=0 case.
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mers at any finite temperature show the same exponents with
those at the zero temperature. On the other hand, if there is
only confining energy �without random potential� there are
three phases as temperature changes. At zero temperature,
the polymer becomes a straight line with width 1 and there-
fore �=0 while it becomes a random walk with �=1/2 at
infinite temperature. At nonzero finite temperature, espe-
cially for �=1 where the confining energy is given by Ec
=�W, the polymer configurations are identical to the self-
flattening surface �9� whose roughness exponent � is 1 /3.
When there are both random potential and confining energy
terms, we do not know the scaling behaviors of the polymers
at finite temperature where our algorithm cannot be applied.

Further investigations are needed to explore the full phase
diagram of DPRMCF over general temperature and dimen-
sions.
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